

SUHAG R. KARIYA (S.R.K. Sir) DOWNLOAD FREE STUDY PACKAGE, TEST SERIES FROM www.tekoclasses.com Bhopal : Phone : (0755) 32 00 000

Wishing You & Your Family A Very Hanny & **Prosperous Deepawali**

Time Limit : 6 Sitting Each of 75 Minutes duration approx.

NOTE: This assignment will be discussed on the very first day after Deepawali Vacation, hence come prepared.

www.tekoclasses.com, Bhopal, Ph.: (0755) 32 00 000, Deepawali Assignment [1] of 16

	PRA	CTIC	E TES	T # 1
M.M	. 80			Time : 75 Min.
Q.1	If $\log (x + z) + \log(x + z) + \log(x + z)$ (A) A.P.	$(-2y + z) = 2 \log(x - z)$ (B) G.P.	(C) H.P.	E] [9 × 3 = 27] (D) A.G.P.
Q.2	If $x \in R$ and $b < c$, the formula $f(x) \in R$ and $b < c$, the formula $f(x) \in R$ and $b < c$.	hen $\frac{x^2 - bc}{2x - b - c}$ has no	values.	
	(A) in $(-\infty, b)$	(B) in (c, ∞)	(C) between b and c	(D) between $-c$ and $-b$
Q.3	circle is			(1) then the centre of the such a
	(A) (1, 1)	(B) (2, 2)	(C) (2, 6)	(D) $(4, 4)$
Q.4	ABCD is a rhombus. (A) $2x - 3y + 4 = 0$	If A is $(-1, 1)$ and C is ((B) $2x - y + 3 = 0$	(5, 3), the equation of B (C) $3x + y - 8 = 0$	D is (D) $x + 2y - 1 = 0$
Q.5	-		be a point on the side B he length OP is equal to	C with PB = 3 and PC = 5. If 'O'
	(A) $\sqrt{15}$	(B) $\sqrt{17}$	(C) $\sqrt{18}$	(D) $\sqrt{19}$
Q.6	If the sides of a right	angled triangle are in A.	P., then $\frac{R}{r} =$	
	(A) $\frac{5}{2}$	(B) $\frac{7}{3}$	(C) $\frac{9}{4}$	(D) $\frac{8}{3}$
Q.7		•	÷ 1 1	and the point P. Suppose that the which both the coordinates of P
	(A) 3	(B) 4	(C) 5	(D) infinitely many
Q.8			f one of the other three st	s vertices are $(-3, 1)$ and $(1, 1)$. raight lines? (D) $4x + 7y = 3$
Q.9				r radii in A.P. If the line $y = x + 1$ ommon difference of the A.P. will
	(A) $\left(0,\frac{1}{4}\right)$	$(\mathbf{B})\left(0,\frac{1}{2\sqrt{2}}\right)$	$(\mathbf{C})\left(0,\frac{2-\sqrt{2}}{4}\right)$	(D) none
		[COMPREHE	INSION TYPE]	$[3 \times 3 = 9]$
	Let A, B, C be three $A : \{(x, y):$ $B : \{(x, y): x \in C : \{(x, y): x \in C : $	sets of real numbers (x, $y \ge 1$ } $x^2 + y^2 - 4x - 2y - 4 = 0$ $x + y = \sqrt{2}$ }	•	to 12
Q.10	Number of elements (A) 0	in the $A \cap B \cap C$ is (B) 1	(C) 2	(D) infinite

www.tekoclasses.com, Bhopal, Ph.: (0755) 32 00 000, Deepawali Assignment [2] of 16

Q.11	(x + 1 (A) 16	$y^{2} + (y-1)^{2} + (x-5)^{2} + (y-1)^{2}$ has the (B) 25	e value equal to (C) 36	(D) 49						
Q.12	If the locus of the point of intersection of the pair of perpendicular tangents to the circle B is the curve S then the area enclosed between B and S is (A) 6π (B) 8π (C) 9π (D) 18π									
	(A) 0				10					
0.12				-		$[2 \times 4 = 8]$				
Q.13		e passes through the points $(-1, 1)$, $(0, ch is/are parallel to the straight line joinin(1, -5) (B) (5, 1)$	g the origin to its centre	is/are :		e, the tangent(s)				
Q.14										
		[МАТСН ТН	E COLUMN]		[(3+	3+3+3)×2=24]				
Q.15		Column-I	-		Column-II					
	(A) The equation $x^{x\sqrt{x}} = (x\sqrt{x})^x$ has two solutions in positive real numbers x. One obvious solution is $x = 1$. The other one is $x =$					8/3				
	(B)	Suppose a triangle ABC is inscribed in If the perimeter of the triangle is 32 cm		1.	(Q)	9/4				
		$\sin A + \sin B + \sin C$ equals			(R)	5/4				
	(0)	8 u m of infinto torm o of the series								
		$\cdot \cdot \frac{3}{4} + \frac{7}{16} + \frac{15}{64} + \frac{31}{256} + \dots \text{ equal}$	als		(S)	8/5				
	(D)	The sum of $\sum_{r=1}^{\infty} \left(\frac{r+3}{r(r+1)(r+2)} \right)$ equa	ls							
Q.16		Column-I			Colun	nn-II				
	(A)	If the line $x + 2ay + a = 0$, $x + 3by$	+b = 0 & x + 4cy + c	= 0	(P)	A.P.				
	(B)	are concurrent, then a, b, c are in The points with the co-ordinates (2 a	c)	(Q)	G.P.					
		are collinear then a, b, c are in								
	(C)	If the lines, $ax + 2y + 1 = 0$; $bx + 3y$ passes through the same point then a,		1 = 0	(R)	H.P.				
	(D)	Let a, b, c be distinct non-negative m				neither A.P.				
		ax + ay + c = 0, $x + 1 = 0$ & $cx + cy +$	+ b=0 pass through		(S)	nor G.P. nor H.P.				
		[SUBJECT		Ξ1						

Q.17 Find the sum of the series $\frac{1^3}{1} + \frac{1^3 + 2^3}{1+3} + \frac{1^3 + 2^3 + 3^3}{1+3+5} + \dots$ up to 16 terms. [6]

Q.18 Find the number of circles that touch all the three lines 2x - y = 5, x + y = 3, 4x - 2y = 7. [6]

www.tekoclasses.com, Bhopal, Ph.: (0755) 32 00 000, Deepawali Assignment [3] of 16

PRACTICE TEST #

M.M. 80

Time : 75 min.

- $[8 \times 3 = 24]$
- If the sum of m consecutive odd integers is m⁴, then the first integer is 0.1 (A) $m^3 + m + 1$ (B) $m^3 + m - 1$ (C) $m^3 - m - 1$ (D) $m^3 - m + 1$
- The values of x for which the inequalities $x^2 + 6x 27 > 0$ and $-x^2 + 3x + 4 > 0$ hold simultaneously lie O.2 in (A)(-1,4)(B) $(-∞, -9) \cup (3, ∞)$ (C) (-9, -1)(D)(3,4)

[STRAIGHT OBJECTIVE TYPE]

The diagonals of the quadrilateral whose sides are lx + my + n = 0, mx + ly + n = 0, Q.3 $lx + my + n_1 = 0$, $mx + ly + n_1 = 0$ include an angle

(A)
$$\frac{\pi}{4}$$
 (B) $\frac{\pi}{2}$ (C) $\tan^{-1}\left(\frac{l^2 - m^2}{l^2 + m^2}\right)$ (D) $\tan^{-1}\left(\frac{2lm}{l^2 + m^2}\right)$

Q.4 In the xy-plane, the length of the shortest path from (0, 0) to (12, 16) that does not go inside the circle $(x-6)^2 + (y-8)^2 = 25$ is

(A)
$$10\sqrt{3}$$
 (B) $10\sqrt{5}$ (C) $10\sqrt{3} + \frac{5\pi}{3}$ (D) $10 + 5\pi$

Q.5 If a_1, a_2, \dots, a_n are in A.P. where $a_i > 0$ for all i,

then
$$\frac{1}{\sqrt{a_1} + \sqrt{a_2}} + \frac{1}{\sqrt{a_2} + \sqrt{a_3}} + \dots + \frac{1}{\sqrt{a_{n-1}} + \sqrt{a_n}}$$
 equals
(A) $\frac{1}{\sqrt{a_1} + \sqrt{a_n}}$ (B) $\frac{n}{\sqrt{a_1} + \sqrt{a_n}}$ (C) $\frac{n+1}{\sqrt{a_1} + \sqrt{a_n}}$ (D) $\frac{n-1}{\sqrt{a_1} + \sqrt{a_n}}$

The equation of a line inclined at an angle $\frac{\pi}{4}$ to the axis X, such that the two circles Q.6 $x^{2} + y^{2} = 4$, $x^{2} + y^{2} - 10x - 14y + 65 = 0$ intercept equal lengths on it, is (A) 2x - 2y - 3 = 0 (B) 2x - 2y + 3 = 0 (C) x - y + 6 = 0(D) x - y - 6 = 0

If the straight line y = mx is outside the circle $x^2 + y^2 - 20y + 90 = 0$, then Q.7 (C) |m| > 3(A) m > 3(B) m < 3(D) |m| < 3

A line with gradient 2 intersects a line with gradient 6 at the point (40, 30). The distance between Q.8 x-intercepts of these lines, is (A) 6

$$(B) 8 (C) 10 (D) 12$$

[COMPREHENSION TYPE] $[3 \times 3 = 9]$ Paragraph for question nos. 9 to 11

Consider a circle $x^2 + y^2 = 4$ and a point P(4, 2). θ denotes the angle enclosed by the tangents from P on the circle and A, B are the points of contact of the tangents from P on the circle.

Q.9 The value of θ lies in the interval $(A)(0, 15^{\circ})$ $(B)(15^{\circ}, 30^{\circ})$ $(C) 30^{\circ}, 45^{\circ})$ $(D) (45^\circ, 60^\circ)$

The intercept made by a tangent on the x-axis is Q.10 (C) 11/4 (A) 9/4 **(B)** 10/4 (D) 12/4

www.tekoclasses.com, Bhopal, Ph.: (0755) 32 00 000, Deepawali Assignment [4] of 16

Q.11 Locus of the middle points of the portion of the tangent to the circle terminated by the coordinate axes is (A) $x^{-2} + y^{-2} = 1^{-2}$ (B) $x^{-2} + y^{-2} = 2^{-2}$ (C) $x^{-2} + y^{-2} = 3^{-2}$ (D) $x^{-2} - y^{-2} = 4^{-2}$

[REASONING TYPE]

Q.12 Statement-1: The circle $C_1: x^2 + y^2 - 6x - 4y + 9 = 0$ bisects the circumference of the circle $C_2: x^2 + y^2 - 6x - 4y + 9 = 0$ bisects the circumference of the circle $C_2: x^2 + y^2 - 6x - 4y + 9 = 0$ bisects the circumference of the circle $C_2: x^2 + y^2 - 6x - 4y + 9 = 0$ bisects the circumference of the circle $C_2: x^2 + y^2 - 6x - 4y + 9 = 0$ bisects the circumference of the circle $C_2: x^2 + y^2 - 6x - 4y + 9 = 0$ bisects the circumference of the circle $C_2: x^2 + y^2 - 6x - 4y + 9 = 0$ bisects the circumference of the circle $C_2: x^2 + y^2 - 6x - 4y + 9 = 0$ bisects the circumference of the circle $C_2: x^2 + y^2 - 6x - 4y + 9 = 0$ bisects the circumference of the circle $C_2: x^2 + y^2 - 6x - 4y + 9 = 0$ bisects the circumference of the circle $C_2: x^2 + y^2 - 6x - 4y + 9 = 0$ bisects the circumference of the circle $C_2: x^2 + y^2 - 6x - 4y + 9 = 0$ bisects the circumference of the circle $C_2: x^2 + y^2 - 6x - 4y + 9 = 0$ bisects the circumference of the circle $C_2: x^2 + y^2 - 6x - 4y + 9 = 0$ bisects the circumference of the circle $C_2: x^2 + y^2 - 6x - 4y + 9 = 0$ bisects the circumference of the circle $C_2: x^2 + y^2 - 6x - 4y + 9 = 0$ bisects the circumference of the circle $C_2: x^2 + y^2 - 6x - 4y + 9 = 0$ bisects the circumference of the circle $C_2: x^2 + y^2 - 6x - 4y + 9 = 0$ bisects the circumference of the circle $C_2: x^2 + y^2 - 6x - 4y + 9 = 0$ bisects the circumference of the circle $C_2: x^2 + y^2 - 6x - 4y + 9 = 0$ bisects the circumference of the circle $C_2: x^2 + y^2 - 6x - 4y + 9 = 0$ bisects the circumference of the circle $C_2: x^2 + y^2 - 6x - 4y + 9 = 0$ bisects the circle $C_2: x^2 + y^2 - 6x - 4y + 9 = 0$ bisects the circumference of the circle $C_2: x^2 + y^2 - 6x - 4y + 9 = 0$ bisects the circumference of the circle $C_2: x^2 + y^2 - 6x - 4y + 9 = 0$ bisects the circle $C_2: x^2 + y^2 - 6x - 4y + 9 = 0$ bisects the circle $C_2: x^2 + y^2 - 6x - 4y + 9 = 0$ bisects the circle $C_2: x^2 + y^2 - 6x - 4y + 9 = 0$ bisects the circle $C_2: x^2 + y^2 - 6x$ 8x - 6y + 23 = 0.

because

Statement-2: Centre of the circle C_1 lies on the circumference of C_2 .

(A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.

(B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1.

(C) Statement-1 is true, statement-2 is false.

(D) Statement-1 is false, statement-2 is true.

[MULTIPLE OBJECTIVE TYPE] $[2 \times 4 = 8]$

 $[1 \times 3 = 3]$

 $[(3+3+3+3)\times 2=24]$

Q.13 Which of the following lines have the intercepts of equal lengths on the circle, $x^2 + y^2 - 2x + 4y = 0?$ (A) 3x - y = 0(B) x + 3y = 0(C) x + 3y + 10 = 0 (D) 3x - y - 10 = 0

0.14 Three distinct lines are drawn in a plane. Suppose there exist exactly n circles in the plane tangent to all the three lines, then the possible values of n is/are (A)0(D) 4

(B)1 (C) 2

[MATCH THE COLUMN]

Q.15 Consider the line Ax + By + C = 0. Match the nature of intercept of the line given in column-I with their corresponding conditions in column-II.

The n	happing is one to one only.		
	Column-I		Column-II
(A)	x intercept is finite and y intercept is infinite	(P)	$A = 0, B, C \neq 0$
(B)	x intercept is infinite and y intercept is finite	(Q)	$C = 0, A, B \neq 0$
(C)	both x and y intercepts are zero	(R)	A, B = 0 and C \neq 0
(D)	both x and y intercepts are infinite	(S)	$B = 0, A, C \neq 0$
	Column I		Column II

Q.16		Column I	Colun	nn II
	(A)	If the lines $ax + 2y + 1 = 0$, $bx + 3y + 1 = 0$ and $cx + 4y + 1 = 0$	(P)	A.P.
		passes through the same point, then a, b, c are in		
	(B)	Let a, b, c be distinct non-negative numbers.	(Q)	G.P.
		If the lines $ax + ay + c = 0$, $x + 1 = 0$ and $cx + cy + b = 0$ passes		
		through the same point, then a, b, c are in		
	(C)	If the lines $ax + amy + 1 = 0$, $bx + (m + 1)by + 1 = 0$	(R)	H.P.
		and $cx + (m + 2)cy + 1 = 0$, where $m \neq 0$ are concurrent then a, b, c are in		
	(D)	If the roots of the equation $x^2 - 2(a + b)x + a(a + 2b + c) = 0$	(S)	None
		be equal then a, b, c are in		

[SUBJECTIVE TYPE]

Q.17 If S_1, S_2, S_3 are the sum of n, 2n, 3n terms respectively of an A.P. then find the value of $\frac{S_3}{(S_2 - S_1)}$. [6]

Q.18 Find the distance of the centre of the circle $x^2 + y^2 = 2x$ from the common chord of the circles $x^2 + y^2 + 5x - 8y + 1 = 0$ and $x^2 + y^2 - 3x + 7y + 25 = 0$. [6]

www.tekoclasses.com, Bhopal, Ph.: (0755) 32 00 000, Deepawali Assignment [5] of 16

PRACTICE TEST # 3

M.M. 68 Time : 75 Min. [STRAIGHT OBJECTIVE TYPE] $[10 \times 3 = 30]$ 0.1 Suppose that two circles C_1 and C_2 in a plane have no points in common. Then (A) there is no line tangent to both C_1 and C_2 . (B) there are exactly four lines tangent to both C_1 and C_2 . (C) there are no lines tangent to both C_1 and C_2 or there are exactly two lines tangent to both C_1 and C_2 . (D) there are no lines tangent to both C_1 and C_2 or there are exactly four lines tangent to both C_1 and C_2 . If cos(x - y), cos x, cos (x + y) are in H.P., then the value of $cos x \sec \frac{y}{2}$ is Q.2 (B) $\pm \frac{1}{\sqrt{2}}$ (C) $\pm \sqrt{2}$ (D) $\pm \sqrt{3}$ $(A) \pm 1$ The shortest distance from the line 3x + 4y = 25 to the circle $x^2 + y^2 = 6x - 8y$ is equal to Q.3 (B) 9/5(C) 11/5 (A) 7/5 (D) 32/5The expression $a(x^2 - y^2) - bxy$ admits of two linear factors for Q.4 (B) a = b(C) $4a = b^2$ (A) a + b = 0(D) all a and b. The points (x_1, y_1) , (x_2, y_2) , (x_1, y_2) and (x_2, y_1) are always : Q.5 (A) collinear (B) concyclic (C) vertices of a square (D) vertices of a rhombus If $x = \sum_{n=0}^{\infty} a^n$, $y = \sum_{n=0}^{\infty} b^n$, $z = \sum_{n=0}^{\infty} c^n$ Q.6 where a, b, c are in A.P. and |a| < 1, |b| < 1, |c| < 1, then x, y, z are in (B) G.P. (C) H.P. (A) A.P. (D)A.G.P.Tangents are drawn from any point on the circle $x^2 + y^2 = R^2$ to the circle $x^2 + y^2 = r^2$. If the line joining **O**.7 the points of intersection of these tangents with the first circle also touch the second, then R equals (C) $\frac{2r}{2-\sqrt{3}}$ (D) $\frac{4r}{3-\sqrt{5}}$ (A) $\sqrt{2}r$ (B) 2r The greatest slope along the graph represented by the equation $4x^2 - y^2 + 2y - 1 = 0$, is (A) - 3 (B) - 2 (C) 2 (D) 3 Q.8 Q.9 The locus of the center of the circles such that the point (2, 3) is the mid point of the chord 5x + 2y = 16 is (A) 2x - 5y + 11 = 0(B) 2x + 5y - 11 = 0(C) 2x + 5y + 11 = 0(D) none The number of distinct real values of λ , for which the determinant $\begin{vmatrix} -\lambda^2 & 1 & 1 \\ 1 & -\lambda^2 & 1 \\ 1 & 1 & -\lambda^2 \end{vmatrix}$ vanishes, is **O**.10 (A)0**(B)**1 (C) 2(D) 3

www.tekoclasses.com, Bhopal, Ph.: (0755) 32 00 000, Deepawali Assignment [6] of 16

Paragraph for questions nos. 11 to 13

Consider the two quadratic polynomials

$$C_a: y = \frac{x^2}{4} - ax + a^2 + a - 2$$
 and $C: y = 2 - \frac{x^2}{4}$

- Q.11 If the origin lies between the zeroes of the polynomial C_a then the number of integral value(s) of 'a' is (A) 1 (B) 2 (C) 3 (D) more than 3
- Q.12 If 'a' varies then the equation of the locus of the vertex of C_a , is (A) x - 2y - 4 = 0 (B) 2x - y - 4 = 0 (C) x - 2y + 4 = 0 (D) 2x + y - 4 = 0
- Q.13 For a = 3, if the lines $y = m_1 x + c_1$ and $y = m_2 x + c_2$ are common tangents to the graph of C_a and C then the value of $(m_1 + m_2)$ is equal to (A) - 6 (B) - 3 (C) 1/2 (D) none

[REASONING TYPE]

Q.14 Statement-1: Angle between the tangents drawn from the point P(13, 6) to the circle $S: x^2 + y^2 - 6x + 8y - 75 = 0$ is 90°.

because

Statement-2: Point P lies on the director circle of S.

(A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.

(B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1.

(C) Statement-1 is true, statement-2 is false.

(D) Statement-1 is false, statement-2 is true.

[MULTIPLE OBJECTIVE TYPE]

Q.15 The fourth term of the A.G.P. 6, 8, 8,, is

(A) 0 (B) 12 (C) $\frac{32}{3}$ (D) $\frac{64}{9}$

Q.16 $\frac{8x^2 + 16x - 51}{(2x - 3)(x + 4)} > 3$ if

(A)
$$x < -4$$
 (B) $x > \frac{5}{2}$ (C) $-1 < x < 1$ (D) $-3 < x < \frac{3}{2}$

[MATCH THE COLUMN]

[3+3+3+3=12]

Column-I Column-II Q.17 The lines y = 0; y = 1; x - 6y + 4 = 0 and x + 6y - 9 = 0**(P)** a cyclic quadraliteral (A) constitute a figure which is The points A(a, 0), B(0, b), C(c, 0) and D(0, d) are **(B)** (Q) a rhombus such that ac = bd and a, b, c, d are all non-zero. The points A, B, C and D always constitute The figure formed by the four lines (C) (R) a square $ax \pm by \pm c = 0$ ($a \neq b$), is The line pairs $x^2 - 8x + 12 = 0$ and $y^2 - 14y + 45 = 0$ (D) **(S)** a trapezium constitute a figure which is

[SUBJECTIVE TYPE]

Q.18 If the variable line 3x - 4y + k = 0 lies between the circles $x^2 + y^2 - 2x - 2y + 1 = 0$ and $x^2 + y^2 - 16x - 2y + 61 = 0$ without intersecting or touching either circle, then the range of k is (a, b) where a, b \in I. Find the value of (b - a). [6]

www.tekoclasses.com, Bhopal, Ph.: (0755) 32 00 000, Deepawali Assignment [7] of 16

 $[1 \times 3 = 3]$

 $[2 \times 4 = 8]$

	PRA	СТІСЕ	E TES	T # 4
M.M.	. 78			Time : 75 Min.
Q.1	-	STRAIGHT OB tive number is unity, the		$[10 \times 3 = 30]$
	(A) a positive	(B) divisible by n	(C) $n + \frac{1}{n}$	(D) never less than n
Q.2	If the angle between the is 2α , then the locus of (A) $x^2 + y^2 + 4x - 6y$ (C) $x^2 + y^2 + 4x - 6y$	the tangents drawn from $rac{1}{1}$ f P is + 14 = 0		
Q.3	A point P(x, y) moves locus of P is (A) a rectangle	such that the sum of its c (B) square	listances from the line 23	x + y = 1 and $x + 2y = 1$ is 1. The (D) rhombus
Q.4	Let the H.M. and G.M (A) 1 : 2	. of two positive numbe (B) 2 : 3	ers a and b in the ratio 4 (C) 3 : 4	: 5 then a : b is (D) 1 : 4
Q.5	If a, b, c are odd integ (A) imaginary roots	ers, then the equation as (B) real root	$x^{2} + bx + c = 0$ cannot h (C) irrational root	ave (D) rational root
Q.6	If two distinct chords bisected by the x-axis, (A) $p^2 = q^2$	then		$y^2 = px + qy$, where $pq \neq 0$, are (D) $p^2 > 8q^2$
Q.7	Locus of the middl $x^{2} + y^{2} - 4x - 2y - 4 =$ (A) $x + 2y - 4 = 0$	= 0, has the equation	n of parallel chords (C) $2x - y - 3 = 0$	with slope 2, of the circle (D) $2x + y - 5 = 0$
Q.8	2x + y = 1, then C is	C		he third vertex C lies on the line 5) (D) $(7, -13)$ or $(-7, 15)$
Q.9	The distance of the point of the two straight lines (A) $(xy_1 - yx_1)^2 = d^2(x_1)^2$ (C) $d^2(xy_1 + yx_1)^2 = x_1^2$	s is $x^2 + y^2$)	(B) $d^{2}(xy_{1} - yx_{1})^{2} = x$ (D) $(xy_{1} + yx_{1})^{2} = d^{2}(xy_{1} - yx_{1})^{2}$	•
Q.10	Area of the triangle $x^2 - y^2 + 4y - 4 = 0$ is (A) 1/2		+ y = 3 and the and (C) $3/2$	gle bisectors of the line pair (D) 2
		[COMPREHEI	NSION TYPE	$[3 \times 3 = 9]$
	Consider a general equ	raph for Que	estion Nos. 11	
Q.11	-	ich the line pair represent (B) 2		s is (D) 3
Q.12	For the value of λ obt	ained in above question act of the abscissa and or		e the lines denoted by the given ntersection is

line pair then the product of the abscissa and ordinate of their point of intersection is (A) 18 (B) 28 (C) 35 (D) 25

www.tekoclasses.com, Bhopal, Ph.: (0755) 32 00 000, Deepawali Assignment [8] of 16

- Q.13If θ is the acute angle between $L_1 = 0$ and $L_2 = 0$ then θ lies in the interval
(A) (45°, 60°)(B) (30°, 45°)(C) (15°, 30°)(D) (0, 15°)
- [REASONING TYPE] $[1 \times 3 = 3]$ Q.14 A circle is circumscribed about an equilateral triangle ABC and a point P on the minor arc joining A and B, is chosen. Let x = PA, y = PB and z = PC. (z is larger than both x and y.)
 - **Statement-1:** Each of the possibilities (x + y) greater than z, equal to z or less than z is possible for some P.

because

Q.

- **Statement-2:** In a triangle ABC, sum of the two sides of a triangle is greater than the third and the third side is greater than the difference of the two.
- (A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
- (B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1.
- (C) Statement-1 is true, statement-2 is false.

(D) Statement-1 is false, statement-2 is true.

[MATCH THE COLUMN]

Q.15 Set of family of lines are described in column-I and their mathematical equation are given in column-II. Match the entry of column-I with suitable entry of column-II. (*m* and *a* are parameters)

		Column-1	Colum	111-11		
	(A)	having gradient 3	(P)	mx – y	+3-2	2m = 0
	(B)	having y intercept three times the x-intercept	(Q)	mx – y		
	(C)	having x intercept (-3)	(R)	3x + y	= 3a	
	(D)	concurrent at $(2, 3)$	(S)	3x – y	+ a = 0	
.16		Column-I			Colum	n-П
	(A)	Let 'P' be a point inside the triangle ABC and is equidist from its sides. DEF is a triangle obtained by the intersec of the external angle bisectors of the angles of the ΔAB With respect to the triangle DEF point P is its	ction		(P)	centroid
	(B)	Let 'Q' be a point inside the triangle ABC $\frac{A}{2} = (BQ)\sin\frac{B}{2} = (CQ)\sin\frac{C}{2}$ then with rest the triangle ABC, Q is its	spect to		(Q)	orthocentre
	(C)	Let 'S' be a point in the plane of the triangle ABC. If the such that infinite normals can be drawn from it on the ci through A, B and C then with respect to the triangle AB	rcle pass	sing	(R)	incentre
	(D)	Let ABC be a triangle. D is some point on the side BC the line segments parallel to BC with their extremities or and AC get bisected by AD. Point E and F are similarly on CA and AB. If segments AD, BE and CF are concu a point R then with respect to the triangle ABC, R is its	n AB v obtaine rrent at		(S)	circumcentre

[SUBJECTIVE TYPE]

Q.17 If a, b, c are positive, then find the minimum value of $(a + b + c)\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right)$.

[6]

 $[(3+3+3+3)\times 2=24]$

Q.18 Find the number of straight lines parallel to the line 3x + 6y + 7 = 0 and have intercept of length 10 between the coordinate axes. [6]

www.tekoclasses.com, Bhopal, Ph.: (0755) 32 00 000, Deepawali Assignment [9] of 16

\leq	PRA	CTIC	E TES	ST # 5
M.M	1. 79			Time : 70 Min.
Q.1	A square is inscribed Then one vertex of t	d in the cirle $x^2 + y^2 - 2x$	BJECTIVE TYP + $4y + 33 = 0$. Its sides a	PE] $[9 \times 3 = 27]$ are parallel to the coordinate axes.
	(A) $(1+\sqrt{2},-2)$	(B) $(1 - \sqrt{2}, -2)$	(C) $(1, -2 + \sqrt{2})$	(D) None
Q.2	If $4^3 = 8^{1+ \cos x +\cos^2}$ (A) 1	$x^{+,\ldots,\infty}$, then the numb (B) 2	per of values of x in [0, 2 (C) 3	2π], is (D) 4
Q.3		e two vertices of a triang		tex C lies on the line $2x + y = 2$. The
	(A) $2x + y = 3$	(B) x + 2y = 3	(C) $2x - y = 3$	(D) - 2x - y = 3
Q.4	If a, b, c, d and p are Then a, b, c, d are	e distinct real numbers	such that $(a^2 + b^2 + c^2)p$	$b^{2}-2(ab+bc+cd)p+b^{2}+c^{2}+d^{2} \le 0.$
	(A) in A.P.	(B) in G.P.	(C) in H.P.	(D) satisfy $ab = cd$
Q.5	A root of the equation	ion $(a + b)(ax + b)(a - b)(a$	$bx) = (a^2x - b)(a + bx)$	is
	(A) $\frac{a+2b}{2a+b}$	(B) $\frac{2a+b}{a+2b}$	(C) $\frac{a-2b}{2a-b}$	$(D) - \left(\frac{a+2b}{2a+b}\right)$
Q.6	A rhombus is insc $x^2 + y^2 + 4x - 12 = 0$ rhombous is :	ribed in the region with two of its vertices	common to the two ci on the line joining the ce	incles $x^2 + y^2 - 4x - 12 = 0$ and entres of the circles. The area of the
	(A) $8\sqrt{3}$ sq.units	(B) $4\sqrt{3}$ sq.units	(C) $16\sqrt{3}$ sq.units	(D) none
Q.7	The locus of the cer touches the y -axis is		thes externally the circle	$e^{x^2} + y^2 - 6x - 6y + 14 = 0$ and also
	(A) $x^2 - 6x - 10y +$ (C) $y^2 - 6x - 10y +$		+ 14 = 0 + 14 = 0	
Q.8			•	ockwise direction through an angle line whose equation referred to the
	old axes is $x + y = 1$	then the value of $\frac{1}{a^2}$ +	$\frac{1}{b^2}$ is equal to	
	(A) 1	(B) 2	(C) 4	(D) $\frac{1}{2}$
Q.9		of the orthocentre of the	-	

www.tekoclasses.com, Bhopal, Ph.: (0755) 32 00 000, Deepawali Assignment [10] of 16

[COMPREHENSION TYPE] Paragraph for question nos. 25 to 27

Consider 3 circles

$$S_1: x^2 + y^2 + 2x - 3 = 0$$

$$S_2: x^2 + y^2 - 1 = 0$$

$$S_2: x^2 + y^2 + 2y - 3 = 0$$

Q.10 The radius of the circle which bisect the circumferences of the circles $S_1 = 0$; $S_2 = 0$; $S_3 = 0$ is (A) 2 (B) $2\sqrt{2}$ (C) 3 (D) $\sqrt{10}$

Q.11 If the circle S = 0 is orthogonal to $S_1 = 0$; $S_2 = 0$ and $S_3 = 0$ and has its centre at (a, b) and radius equals to 'r' then the value of (a + b + r) equals (A) 0 (B) 1 (C) 2 (D) 3

Q.12 The radius of the circle touching $S_1 = 0$ and $S_2 = 0$ at (1, 0) and passing through (3, 2) is (A) 1 (B) $\sqrt{12}$ (C) 2 (D) $2\sqrt{2}$

[REASONING TYPE]

 $[1 \times 3 = 3]$

 $[1 \times 4 = 4]$

 $[3 \times 3 = 9]$

Q.13 Consider the circle $C: x^2 + y^2 - 2x - 2y - 23 = 0$ and a point P(3, 4). Statement-1: No normal can be drawn to the circle C, passing through (3, 4). **because** Statement-2: Point P lies inside the given circle, C.

(A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.

(B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1.

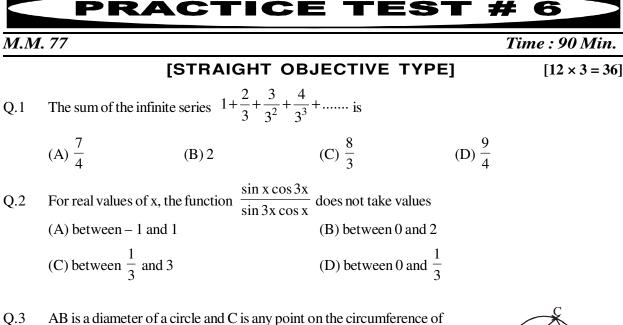
(C) Statement-1 is true, statement-2 is false.

Q.

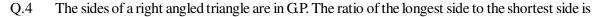
(D) Statement-1 is false, statement-2 is true.

[MULTIPLE OBJECTIVE TYPE]

Q.14 Let L_1 be a line passing through the origin and L_2 be the line x + y = 1. If the intercepts made by the circle $x^2 + y^2 - x + 3y = 0$ (A) x + y = 0 (B) x - y = 0 (C) x + 7y = 0 (D) x - 7y = 0


.15		[MATCH THE COLUMN] Column-I	[(3+.	3+3+3)×2=24] Column-II
	(A)	The sum $\sum_{r=1}^{100} r^2 \tan\left(\frac{2r-1}{4}\right)$ is equal to	(P)	- 5151
	(B)	Solution of the equation $\cos^4 x = \cos 2x$ which lie in the interval [0, 314] is $k\pi$ where k equals	(Q)	- 5050
	(C)	Sum of the integral solutions of the inequality	(R)	5049
		$\log_{1/\sqrt{5}}(6^{x+1}-36^x) \ge -2$ which lie in the interval [-101, 0]	(S)	4950
	(D)	Let $P(n) = \log_2 3 \cdot \log_3 4 \cdot \log_4 5 \dots \log_{n-1}(n)$ then the		

Q.16		Column-I		Column-II
	(A)	Two intersecting circles	(P)	have a common tangent
	(B)	Two circles touching each other	(Q)	have a common normal
(C) Two non concentric the other		Two non concentric circles, one strictly inside the other	(R)	do not have a common normal
	(D)	Two concentric circles of different radii	(S)	do not have a radical axis.


[SUBJECTIVE]

Q.17 A(0, 1) and B(0, -1) are 2 points if a variable point P moves such that sum of its distance from A and B is 4. Then the locus of P is the equation of the form of $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. Find the value of $(a^2 + b^2)$ is . [6]

Q.18 Find the product of all the values of x satisfying the equation $(5+2\sqrt{6})^{x^2-3} + (5-2\sqrt{6})^{x^2-3} = 10.$ [6]

- Q.3 AB is a diameter of a circle and C is any point on the circumference of the circle. Then
 (A) Area of ΔABC is maximum when it is isosceles.
 (B) Area of ΔABC is minimum when it is isosceles.
 (C) Perimeter of ΔABC is minimum when it is isosceles.
 - (D) None

(A)
$$\frac{\sqrt{3}+1}{2}$$
 (B) $\sqrt{3}$ (C) $\frac{\sqrt{5}-1}{2}$ (D) $\frac{\sqrt{5}+1}{2}$

Q.5 In a right triangle ABC, right angled at A, on the leg AC as diameter, a semicircle is described. The chord joining A with the point of intersection D of the hypotenuse and the semicircle, then the length AC equals to

(A)
$$\frac{AB \cdot AD}{\sqrt{AB^2 + AD^2}}$$
 (B) $\frac{AB \cdot AD}{AB + AD}$ (C) $\sqrt{AB \cdot AD}$ (D) $\frac{AB \cdot AD}{\sqrt{AB^2 - AD^2}}$

Q.6 ABC is an isoscele triangle with AB = AC. The equation of the sides AB and AC are 2x + y = 1 and x + 2y = 2. The sides BC passes through the point (1, 2) and makes positive intercept on the x-axis. The equation of BC is (A) x - y + 1 = 0 (B) x + y - 3 = 0 (C) 2x + y - 4 = 0 (D) x - 2y + 3 = 0

Q.7 The number of tangents that can be drawn from the point $\left(\frac{5}{2}, 1\right)$ to the circle passing through the points

 $(1,\sqrt{3}), (1,-\sqrt{3}) \text{ and } (3,-\sqrt{3}) \text{ is}$ (A) 1 (B) 0 (C) 2 (D) None

www.tekoclasses.com, Bhopal, Ph.: (0755) 32 00 000, Deepawali Assignment [13] of 16

- Q.8 The image of the line x + 2y = 5 in the line x y = 2, is (A) 2x + y = 7 (B) x + 2y = 5 (C) 2x + 3y = 9 (D) 2x - 3y = 3
- Q.9 The area of the quadrilateral formed by the lines $\sqrt{3} x + y = 0$, $\sqrt{3} y + x = 0$, $\sqrt{3} x + y = 1$, $\sqrt{3} y + x = 1$ is

Q.10 B and C are fixed points having co-ordinates (3, 0) and (-3, 0) respectively. If the vertical angle BAC is 90°, then the locus of the centroid of the \triangle ABC has the equation : (A) $x^2 + y^2 = 1$ (B) $x^2 + y^2 = 2$ (C) $9(x^2 + y^2) = 1$ (D) $9(x^2 + y^2) = 4$

- Q.11 Let a, b, c three numbers between 2 and 18 such that their sum is 25. If 2, a, b are in A.P. and b, c, 18 are in G.P., then 'c' equal
 (A) 10
 (B) 12
 (C) 14
 (D) 16
- Q.12 If the roots of $x^2 + px + q = 0$ are tan 30° and tan 15°, then (2 + q p) equals (A) 0 (B) 1 (C) 2 (D) 3

$$[REASONING TYPE] \qquad [1 \times 3 = 3]$$

Q.13 Consider the lines

L: (k+7)x - (k-1)y - 4(k-5) = 0 where k is a parameter

and the circle

 $C: x^2 + y^2 + 4x + 12y - 60 = 0$

Statement-1: Every member of L intersects the circle 'C' at an angle of 90°

because

Statement-2: Every member of L is tangent to the circle C.

- (A) Statement-1 is true, statement-2 is true; statement-2 is correct explanation for statement-1.
- (B) Statement-1 is true, statement-2 is true; statement-2 is NOT the correct explanation for statement-1.

(C) Statement-1 is true, statement-2 is false.

(D) Statement-1 is false, statement-2 is true.

[MULTIPLE OBJECTIVE TYPE] $[2 \times 4 = 8]$

Q.14 Consider the points O (0, 0), A (0, 1) and B (1, 1) in the x-y plane. Suppose that points C (x, 1) and D (1, y) are chosen such that 0 < x < 1 and such that O, C and D are collinear. Let sum of the area of triangles OAC and BCD be denoted by 'S' then which of the following is/are correct?

(A) Minimum value of S is irrational lying in (1/3, 1/2)

(B) Minimum value of S is irrational in (2/3, 1)

- (C) The value of x for minimum value of S lies in (2/3, 1)
- (D) The value of x for minimum values of S lies in (1/3, 1/2)
- Q.15 If 5x y, 2x + y, x + 2y are in A.P. and $(x 1)^2$, (xy + 1), $(y + 1)^2$ are in G.P., $x \ne 0$, then (x + y) equals
 - (A) $\frac{3}{4}$ (B) 3 (C) -5 (D) -6

0.16		[MATCH THE COLUMN	[(3+	[(3+3+3+3)×2=24] Column-II			
Q.16	(A)	Column-I The four lines $3x - 4y + 11 = 0$; $3x - 4y - 9 = 0$; 4x + 3y + 3 = 0 and $4x + 3y - 17 = 0$ enclose a figure which is	The four lines $3x - 4y + 11 = 0$; $3x - 4y - 9 = 0$; (P) a quadrilateral x + 3y + 3 = 0 and 4x + 3y - 17 = 0 enclose a a parallelogram				
	(B)	The lines 2 x + y = 1, x + 2 y = 1, 2 x + y = 3 and (a parallelogram a rectangle noi	ram which is neither nor a rhombus			
	(С)	$x^{2} - 7xy + 3y^{2} + 5x + 10y - 25 = 0$, A and B are the points in which these lines are cut by the line	(R)	square. a square	ich is no		
Q.17	(A)	Column-I If the straight line $y = kx \forall K \in I$ touches or passes outs the circle $x^2 + y^2 - 20y + 90 = 0$ then $ k $ can have the y		Colun (P)	nn-II 1		
	(B)	Two circles $x^2 + y^2 + px + py - 7 = 0$ and $x^2 + y^2 - 10x + 2py + 1 = 0$ intersect each other orth then the value of p is	ally	(Q)	2		
	 (C) If the equation x² + y² + 2λx + 4 = 0 and x² + y² - 4λy + 8 = 0 represent real circles then the value of λ can be (D) Each side of a square is of length 4. The centre of the square is (3, 7). One diagonal of the square is parallel to y = x. The possible abscissae of the vertices of the square can be 						

[SUBJECTIVE]

Q.18 Find the area of the pentagon whose vertices taken in order are (0, 4), (3, 0), (6, 1), (7, 5) and (4, 9). [6] **ANSWER KEY**

PRACTICE TEST-1

Q.1	С	Q.2	С	Q.3	А	Q.4	С	Q.5	В	Q.6	А	Q.7	D
Q.8	А	Q.9	С	Q.10	В	Q.11	С	Q.12	С	Q.13	B, D	Q.14	A, C
Q.15	(A) Q	; (B) S	S; (C) P	; (D) R		Q.16	(A) R;	(B) S;	(C) P;	(D) Q			
Q.17	446	Q.18	4										
					PRA	CTI	CE TE	ST-2					
Q.1	D	Q.2	D	Q.3	В	Q.4	С	Q.5	D	Q.6	А	Q.7	D
Q.8	С	Q.9	D	Q.10	В	Q.11	А	Q.12	В	Q.13	A, B, 9	C, D	
Q.14	A, C, 1	D				Q.15	(A) S;	(B) P; ((C) Q; (I	D) R			
Q.16	(A) P;	(B) S;(C) R; (I	D) Q		Q.17	3	Q.18	2				
PRACTICE TEST-3													
Q.1	D	Q.2	С	Q.3	А	Q.4	D	Q.5	В	Q.6	С	Q.7	В
Q.8	С	Q.9	А	Q.10	С	Q.11	В	Q.12	А	Q.13	В	Q.14	А
Q.15	A, D	Q.16	A, B, I	D		Q.17	(A) P,	S; (B) I	P; (C) Q	Q; (D) F	, Q, R	Q.18	6
					PRA	CTIC	CE TE	ST-4					
Q.1	D	Q.2	D	Q.3	А	Q.4	D	Q.5	D	Q.6	D	Q.7	А
Q.8	В	Q.9	А	Q.10	А	Q.11	В	Q.12	С	Q.13	D	Q.14	D
Q.15	(A) S;	(B) R;	(C) Q;	(D) P		Q.16	6 (A) Q; (B) R; (C) S; (D) P						
Q.17	9	Q.18	2										
						ACTIO							
Q.1	D	Q.2	D	Q.3		Q.4		-		Q.6	А	Q.7	D
Q.8	В	Q.9	А	Q.10		Q.11		_	С	-	D	-	B, C
Q.15	(A) Q	; (B) S;	(C) P;	(D) R		Q.16	(A) P, Q; (B) P, Q; (C) Q; (D) Q, S						
Q.17	7	Q.18	8										
					PRA	ACTIO	CE TE	ST-6					
Q.1	D	Q.2	С	Q.3	А	Q.4	D	Q.5	D	Q.6	В	Q.7	В
Q.8	А	Q.9	В	Q.10	А	Q.11	В	Q.12	D	Q.13	С	Q.14	A, C
Q.15	A, D	Q.16	(A) S;	(B) R;	(C) Q	Q.17	(A) P,	Q, R; (B) Q, R	; (C) Q	, R, S; ((D) P, S	
Q.18	36.5												
			-										

www.tekoclasses.com, Bhopal, Ph.: (0755) 32 00 000, Deepawali Assignment [16] of 16